LINEAR SYSTEMS

Improved Standard Products[®]

FEATURES						
Direct Replacement for Intersil IT124 Pin for Pin Compatible						
ABSOLUTE MAXIMUM RATINGS <u>NOTE 1</u> (T _A = 25°C unless otherwise noted)						
I _C Collector-Current	10mA					
Maximum Temperatures						
Storage Temperature Range -65°C to +150°C						
Operating Junction Temperature	•	-55°C to +150°C				
Maximum Power Dissipation	ONE S	IDE	BOTH SIDES			
Device Dissipation T _A =25°C	250mW		500mW			
Linear Derating Factor	2.3m\	N/°C	4.3W/°C			

IT124 SUPER-BETA MONOLITHIC DUAL NPN TRANSISTOR

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	IT124		UNITS	CONDITIONS	
ВV _{CBO}	Collector-Base Breakdown Voltage	2	MIN.	V	Ic = 10μΑ	$I_E = 0A$
BV _{CEO}	Collector to Emitter Voltage	2	MIN.	V	$I_C = 10 \mu A$	$I_B = 0A$
BVEBO	Emitter-Base Breakdown Voltage	6.2	MIN.	V	I _E = 10μΑ	Ic = 0A <u>NOTE 2</u>
BVcco	Collector to Collector Voltage	50	MIN.	V	$I_{CCO} = 10 \mu A$	$I_B = I_E = 0A$
h _{FE}	DC Current Gain	1500	MIN.		$I_C = 1 \mu A$	$V_{CE} = 1V$
hfe	DC Current Gain	1500	MIN.		Ic = 10μΑ	$V_{CE} = 1V$
V _{CE} (SAT)	Collector Saturation Voltage	0.5	MAX.	V	$I_{\rm C} = 1 {\rm mA}$	$I_B = 0.1 \text{mA}$
Ісво	Collector Cutoff Current	100	MAX.	pА	I _E = 0	V _{CB} = 1V
I _{EBO}	Emitter Cutoff Current	100	MAX.	pА	Ic = 0	$V_{EB} = 3V$
Сово	Output Capacitance ³	2	MAX.	pF	I _E = 0	$V_{CB} = 1V$
Cc1c2	Collector to Collector Capacitance ³	2	MAX.	pF	$V_{CC} = 0$	
I _{C1C2}	Collector to Collector Leakage Current	±500	MAX.	nA	$V_{CCO} = \pm 50V$	$I_B = I_E = 0A$
f⊤	Current Gain Bandwidth Product ³	100	MIN.	MHz	Ic = 100μA	V _{CE} = 1V
NF	Narrow Band Noise Figure ³	3	MAX.	dB	Ic = 10μΑ	$V_{CE} = 3V$
					R _G = 10 KΩ	f=1KHz
					BW = 200Hz	

SYMBOL	CHARACTERISTIC	IT124		UNITS	CONDITIONS
VBE1-VBE2	Base Emitter Voltage Differential	2	TYP.	mV	Ic = 10 μA Vcε = 1V
		5	MAX.	mV	
$\Delta (V_{BE1}-V_{BE2}) /\Delta T$	Base Emitter Voltage Differential	5	TYP.	µV/°C	$I_C = 10 \ \mu A$ $V_{CE} = 1V$
	Change with Temperature ³	15	MAX.	μV/°C	T = -55°C to +125°C
I _{B1} -I _{B2}	Base Current Differential	0.6	MAX.	nA	$I_C = 10 \ \mu A$ $V_{CE} = 1V$

MATCHING CHARACTERISTICS @ 25°C (unless otherwise noted)

NOTES:

- 1. These ratings are limiting values above which the serviceability of any semiconductor may be impaired
- 2. The reverse base-to-emitter voltage must never exceed 6.2 volts; the reverse base-to-emitter current must never exceed 10 µA.
- 3. Not a production test.

Linear Systems, established in 1987, is a third-generation precision semiconductor company providing high-quality discrete components. Expertise brought to Linear Systems is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company President John H. Hall. Hall, a protégé of Silicon Valley legend Dr. Jean Hoerni, was the director of IC Development at Union Carbide, co-founder and vice president of R&D at Intersil, and founder/president of Micro Power Systems.

Linear Integrated Systems