
LINEAR SYSTEMS

Improved Standard Products[®]

FEATURES						
DIRECT REPLACEMENT FOR SILICONIX 2N5018						
ZERO OFFSET VOLTAGE						
LOW ON RESISTANCE 75Ω						
ABSOLUTE MAXIMUM RATINGS ¹ @ 25 °C (unless otherwise stated)						
Maximum Temperatures						
Storage Temperature	-55 to 150°C					
Junction Operating Temperature -55 to 150°C						
Maximum Power Dissipation						
Continuous Power Dissipation ³	500mW					
Maximum Currents						
Gate Current	-10mA					
Maximum Voltages						
Gate to Drain	30V					
Gate to Source	30V					

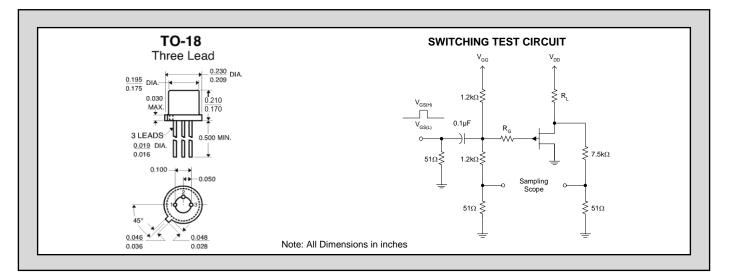
2N5018 SERIES

SINGLE P-CHANNEL JFET SWITCH

STATIC ELECTRICAL CHARACERISTICS @25°C (unless otherwise stated)

SYM.	CHARACTERISTIC TYP 2N5018 2N5019		019	UNITS	CONDITIONS				
5111.	CHARACTERISTIC	ITP	MIN	MAX	MIN	MAX		CONDITIONS	
BV _{GSS}	Gate to Source Breakdown Voltage		30		30			$I_G = 1 \mu A, V_{DS} = 0 V$	
V _{GS(off)}	Gate to Source Cutoff Voltage			10		5	V	$V_{DS} = -15V, I_D = -1\mu A$	
	Drain to Source On Voltage			-0.5				$V_{GS} = 0V, I_D = -6mA$	
V _{DS(on)}	Drain to Source On Voltage					-0.5		$V_{GS} = 0V, I_D = -3mA$	
IDSS	Drain to Source Saturation Current ²		-10		-5		mA	V_{DS} = -20V, V_{GS} = 0V	
lgss	Gate Leakage Current			2		2	nA	$V_{GS} = 15V, V_{DS} = 0V$	
1	Drain Cutoff Current			-10		-10	ПА	$V_{DS} = -15V, V_{GS} = 12V$	
I _{D(off)}						-10	μA	V_{DS} = -15V, V_{GS} = 7V	
Idgo	Drain Reverse Current			-2		-2	nA	$V_{DG} = -15V, I_S = 0A$	
r DS(on)	Drain to Source On Resistance			75		150	Ω	$I_D = -1mA$, $V_{GS} = 0V$	

DYNAMIC ELECTRICAL CHARACTERISTICS @25°C (unless otherwise stated)


SYM.	CHARACTERISTIC	ТҮР	2N5018		2N5019		UNITS	CONDITIONS	
5 T IVI.	CHARACTERISTIC	ITF	MIN	MAX MIN MAX					
r _{ds(on)}	Drain to Source On Resistance			75		150	Ω	$I_D = -100\mu A, V_{GS} = 0V$ f = 1kHz	
Ciss	Input Capacitance			45		45		$V_{DS} = -15V, V_{GS} = 0V$ f = 1MHz	
Crss	Reverse Transfer Capacitance			10			pF	$V_{DS} = 0V, V_{GS} = 12V$ f = 1MHz	
Urss	Reverse Transier Capacitance					10		$V_{DS} = 0V, V_{GS} = 7V$ f = 1MHz	

SWITCHING CHARACTERISTICS (max)

SYM.	CHARACTERISTIC	2N5018	2N5019	UNITS
t _{d(on)}	Turn On Time	15	15	
tr	rum On Time	20	75	
t _{d(off)}	Turn Off Time	15	25	ns
tr		50	100	

SWITCHING CIRCUIT CHARACTERISTICS

SYM.	2N5018	2N5019
Vdd	-6V	-6V
Vgg	12V	8V
R∟	910Ω	1.8KΩ
RG	220Ω	390Ω
I _{D(on)}	-6mA	-3mA
V _{GS(H)}	0V	0V
V _{GS(L)}	12V	7V

NOTES

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse test: PW \leq 300µs, Duty Cycle \leq 3%
- 3. Derate 3mW/°C above 25°C.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Linear Integrated Systems develops and produces the highest performance semiconductors of their kind in the industry. Linear Systems, founded in 1987, uses patented and proprietary processes and designs to create its high performance discrete semiconductors. Expertise brought to the company is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company founder John H. Hall.

\mathbf{SS}

Linear Integrated Systems