

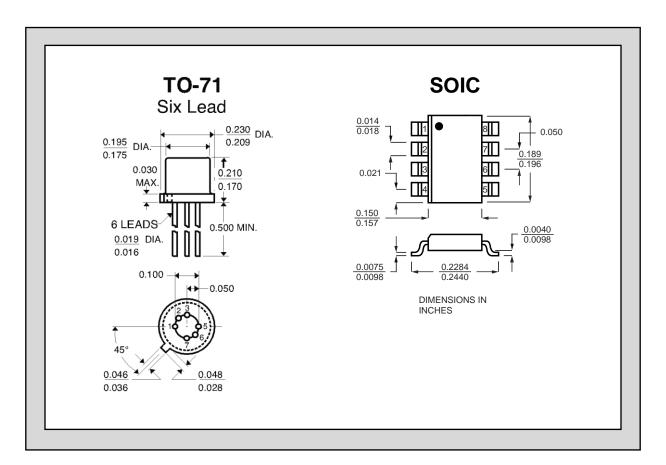
Improved Standard Products®

FEATURES					
Direct Replacement for SILICONIX U/SST440 & U/SST441					
HIGH CMRR	CMRR ≥ 85dB				
LOW GATE LEAKAGE I _{GSS} ≤ 1pA					
ABSOLUTE MAXIMUM RATINGS ¹					
@ 25 °C (unless otherwise stated)					
Maximum Temperatures					
Storage Temperature	-55 to +150 °C				
Operating Junction Temperature -55 to +150 °C					
Maximum Power Dissipation @ TA = 25°C					
Continuous Power Dissipation (Total)	500mW				
Maximum Currents					
Gate Current	50mA				
Maximum Voltages					
Gate to Drain	-25V				
Gate to Source	-25V				
Gate to Gate	±50V				

U/SST440, 441

WIDEBAND HIGH GAIN MONOLITHIC DUAL N-CHANNEL JFET AMPLIFIER

MATCHING CHARACTERISTICS @ 25 °C (unless otherwise stated)


SYMBOL	CHARACTERISTIC		MIN	TYP	MAX	UNITS	CONDITIONS
V _{GS1} – V _{GS2}	Differential Gate to Source Cutoff Voltage	U/SST440			10	mV	$V_{DG} = 10V$, $I_D = 5mA$
		U/SST441			20		
$\Delta \left V_{\text{GS1}} - V_{\text{GS2}} \right $	Differential Gate to Source Cutoff			20		μV/°C	$V_{DG} = 10V, I_{D} = 5mA$
ΔΤ	Voltage Change with Temperature		20		μν/ Ο	T _A = -55 to +125°C	
	Gate to Source Saturation Current Ratio ³			0.98			$V_{DS} = 10V$, $V_{GS} = 0V$
$\frac{g_{\text{fs1}}}{g_{\text{fs2}}}$	Forward Transconductance I	Ratio ²		0.97			$V_{DS} = 10V, I_{D} = 5mA, f = 1kHz$
CMRR	Common Mode Rejection Ratio			85		dB	$V_{DG} = 5$ to 10V, $I_D = 5$ mA

ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage	-25			V	$I_G = -1\mu A$, $V_{DS} = 0V$
$V_{GS(off)}$	Gate to Source Cutoff Voltage	-1	-3.5	-6	V	$V_{DS} = 10V, I_{D} = 1nA$
I _{DSS}	Gate to Source Saturation Current ²	6	15	30	mA	$V_{DS} = 10V$, $V_{GS} = 0V$
Igss	Gate Leakage Current		-1	-500	nΛ	$V_{GS} = -15V$, $V_{DS} = 0V$
lg	Gate Operating Current		-1	-500	рA	$V_{DG} = 10V, I_{D} = 5mA$

ELECTRICAL CHARACTERISTICS CONTINUED @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
g fs	Forward Transconductance	4.5	6	9	mS	$V_{DS} = 10V, I_{D} = 5mA, f = 1kHz$
gos	Output Conductance		70	200	μS	
Ciss	Input Capacitance		3		, F	$V_{DS} = 10V, I_{D} = 5mA, f = 1MHz$
Crss	Reverse Transfer Capacitance		1		pF	
en	Equivalent Input Noise Voltage		4		nV/√Hz	$V_{DS} = 10V, I_D = 5mA, f = 10kHz$

NOTES:

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse Test: PW ≤ 300µs Duty Cycle ≤ 3%
- 3. Assumes smaller value in numerator.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Linear Integrated Systems develops and produces the highest performance semiconductors of their kind in the industry. Linear Systems, founded in 1987, uses patented and proprietary processes and designs to create its high performance discrete semiconductors. Expertise brought to the company is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company founder John H. Hall.