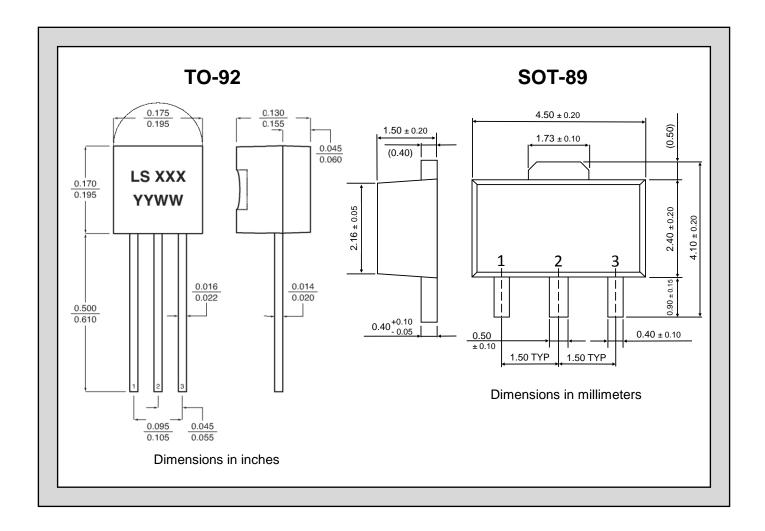


Over 30 Years of Quality Through Innovation

LS190

GENERAL PURPOSE SINGLE N-CHANNEL JFET AMPLIFIER


FEATURES						
HIGH BREAKDOWN VOLTAGE	BV _{GSS} =40V max					
HIGH GAIN	G _{fs} =22mS (typ)					
HIGH INPUT IMPEDENCE	I _G = -500pA max					
LOW CAPACITANCE	20pF (typ)					
ABSOLUTE MAXIMUM RATINGS ¹						
TA = 25 °C (unless otherwise stated)						
Maximum Temperatures						
Storage Temperature	-55 to +150 °C					
Operating Junction Temperature	-55 to +135 °C					
Maximum Power Dissipation						
Continuous Power Dissipation (TO-92)	400mW ⁴					
Continuous Power Dissipation (SOT-89)	1.4W ^{5, 6}					
Maximum Currents						
Gate Forward Current	$I_{G(F)}=10mA$					
Maximum Voltages						
Gate to Source	$V_{GS} = 40V$					
Gate to Drain	$V_{GD} = 40V$					

*For equivalent monolithic dual, see LSK589

ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage	-40			V	$V_{DS} = 0$, $I_{D} = 100 \mu A$
V _{GS(OFF)}	Gate to Source Pinch-off Voltage	-0.2		-2	V	$V_{DS} = 10V$, $I_D = 1nA$
V _G S	Gate to Source Operating Voltage		-0.5		V	$V_{DS} = 10V, I_{D} = 1mA$
IDSS	Drain to Source Saturation Current	2.6		30	mA	$V_{DS} = 10V, V_{GS} = 0$
IG	Gate Operating Current			-0.5	nA	$V_{DG} = 10V$, $I_D = 1mA$
I _{GSS}	Gate to Source Leakage Current			-1	nA	$V_{GS} = -10V, V_{DS} = 0$
GfS	Full Conduction Transconductance		22		mS	$V_{GD} = 10V$, $V_{GS} = 0$, $f = 1kHz$
GfS	Typical Conduction Transconductance		10		mS	$V_{DG} = 15V$, $I_D = 1mA$
R _{DS(on)}	Drain to Source on Resistance		75	150	Ω	$V_{GS} = 0V$, $I_D = -1mA$
Ciss	Common Source Input Capacitance		20		pF	$V_{DS} = 15V$, $I_{D} = 100\mu A$, $f = 1MHz$
C _{RSS}	Common Source Reverse Transfer Cap.		5		pF	

NOTES:

- 1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
- 2. Pulse Test: PW ≤ 300µs, Duty Cycle ≤ 3%
- 3. Derate 2.8mW/°C above TA = 25°C
- 4. Mounted on FR5 board, 25mm x 25mm x 1.57mm
- 5. Derate by 25mW/°C above 25°C
- 6. All characteristics MIN/TYP/MAX numbers are absolute values. Negative values indicate electrical polarity only. Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.

Linear Integrated Systems develops and produces the highest performance semiconductors of their kind in the industry. Linear Systems, founded in 1987, uses patented and proprietary processes and designs to create its high performance discrete semiconductors. Expertise brought to the company is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company founder John H. Hall.