FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULTRA LOW NOISE</td>
<td>$e_n = 2.0\text{nV/}\sqrt{\text{Hz}}$</td>
</tr>
<tr>
<td>LOW INPUT CAPACITANCE</td>
<td>$C_{iss} = 8\text{pF}$</td>
</tr>
</tbody>
</table>

Features
- Reduced Noise due to process improvement
- Monolithic Design
- High slew rate
- Low offset/drift voltage
- Low gate leakage I_{gs} & I_g
- High CMRR 102 dB

Benefits
- Tight differential voltage match vs. current
- Improved op amp speed settling time accuracy
- Minimum Input Error trimming error voltage
- Lower intermodulation distortion

Applications
- Wide band differential Amps
- High speed temperature compensated single ended input amplifier amps
- High speed comparators
- Impedance Converters

Description
The LSJ689 high performance, P-Channel, monolithic dual JFET features extremely low noise, tight offset voltage and low drift over temperature. It is targeted for use in a wide range of precision instrumentation applications. The SOT-23, TO-71 and SO-8 packages provide ease of manufacturing and the symmetrical pinouts prevent improper orientation. The SOT-23 and SO-8 packages are available in tape and reel, compatible with automatic assembly methods. (See packaging data)

ABSOLUTE MAXIMUM RATINGS

@ 25 °C (unless otherwise stated)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Temperatures</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-55 to +150°C</td>
</tr>
<tr>
<td>Junction Operating Temperature</td>
<td>-55 to +150°C</td>
</tr>
<tr>
<td>Maximum Power Dissipation, $T_A = 25°C$</td>
<td></td>
</tr>
<tr>
<td>Continuous Power Dissipation, per side</td>
<td>300mW</td>
</tr>
<tr>
<td>Power Dissipation, total</td>
<td>500mW</td>
</tr>
<tr>
<td>Maximum Currents</td>
<td></td>
</tr>
<tr>
<td>Gate Forward Current</td>
<td>$I_{GF} = -10\text{mA}$</td>
</tr>
<tr>
<td>Maximum Voltages</td>
<td></td>
</tr>
<tr>
<td>Gate to Source</td>
<td>$V_{GS} = 50\text{V}$</td>
</tr>
<tr>
<td>Gate to Drain</td>
<td>$V_{GD} = 50\text{V}$</td>
</tr>
</tbody>
</table>
Matching Characteristics @ 25°C (unless otherwise stated)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>CHARACTERISTIC</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>⎡VGSS – VGs⎤</td>
<td>Differential Gate to Source Voltage</td>
<td>20</td>
<td>nV</td>
<td></td>
<td></td>
<td>VDS = -15V, IG = -1mA</td>
</tr>
<tr>
<td>Ioss2 / Ioss1</td>
<td>Saturation Drain Current Ratio</td>
<td>0.90</td>
<td>1.0</td>
<td></td>
<td></td>
<td>VDS = -15V, VG = 0V</td>
</tr>
<tr>
<td>CMRR</td>
<td>COMMON MODE REJECTION RATIO -20 log</td>
<td>95</td>
<td>102</td>
<td>db</td>
<td></td>
<td>VDS = -10V to -20V, ID = -200µA</td>
</tr>
<tr>
<td>GS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electrical Characteristics @ 25°C (unless otherwise stated)

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>CHARACTERISTIC</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_n</td>
<td>Noise Voltage</td>
<td>2.0</td>
<td>nV/√Hz</td>
<td></td>
<td></td>
<td>VDS = -15V, I0 = -2.0mA, f = 1kHz, NBW = 1Hz</td>
</tr>
<tr>
<td>e_n</td>
<td>Noise Voltage</td>
<td>3.5</td>
<td>nV/√Hz</td>
<td></td>
<td></td>
<td>VDS = -15V, I0 = -2.0mA, f = 10Hz, NBW = 1Hz</td>
</tr>
<tr>
<td>Ciss</td>
<td>Common Source Input Capacitance</td>
<td>8</td>
<td>pF</td>
<td></td>
<td></td>
<td>VDS = -15V, I0 = -200µA, f = 1MHz</td>
</tr>
<tr>
<td>Crss</td>
<td>Common Source Reverse Transfer Capacitance</td>
<td>3</td>
<td>pF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bvgs</td>
<td>Gate to Source Breakdown Voltage</td>
<td>50</td>
<td>V</td>
<td></td>
<td></td>
<td>VDS = 0V, IG = 1µA</td>
</tr>
<tr>
<td>V(BRG1 - G2)</td>
<td>Gate to Gate Breakdown Voltage</td>
<td>±30</td>
<td>±45</td>
<td>V</td>
<td></td>
<td>IG = ±1µA, I0 = IGS = 0A (Open Circuit)</td>
</tr>
<tr>
<td>Vgs(off)</td>
<td>Gate to Source Pinch-off Voltage</td>
<td>1.50</td>
<td>5.0</td>
<td>V</td>
<td></td>
<td>VDS = -15V, IG = -1mA</td>
</tr>
<tr>
<td>Ids</td>
<td>Drain to Source Saturation Current</td>
<td>-2.5</td>
<td>-30</td>
<td>mA</td>
<td></td>
<td>VDS = -15V, VG = 0V</td>
</tr>
<tr>
<td>IG</td>
<td>Gate Operating Current</td>
<td>2</td>
<td>pA</td>
<td></td>
<td></td>
<td>VGG = -15V, I0 = -200µA</td>
</tr>
<tr>
<td>Igs</td>
<td>Gate to Source Leakage Current</td>
<td>0.9</td>
<td>100</td>
<td>pA</td>
<td></td>
<td>VGS = 15V, VDS = 0V</td>
</tr>
<tr>
<td>Gfs</td>
<td>Full Conductance Transconductance</td>
<td>1500</td>
<td>µS</td>
<td></td>
<td></td>
<td>VDS = -15V, VG = 0V, f = 1kHz</td>
</tr>
<tr>
<td>Gfs</td>
<td>Transconductance</td>
<td>1500</td>
<td>µS</td>
<td></td>
<td></td>
<td>VDS = -15V, I0 = -200µA, f = 1kHz</td>
</tr>
<tr>
<td>GOS</td>
<td>Full Output Conductance</td>
<td>38</td>
<td>µS</td>
<td></td>
<td></td>
<td>VDS = -15V, VG = 0V, f = 1kHz</td>
</tr>
<tr>
<td>GOS</td>
<td>Output Conductance</td>
<td>3</td>
<td>µS</td>
<td></td>
<td></td>
<td>VDS = -15V, I0 = -200µA, f = 1kHz</td>
</tr>
<tr>
<td>NF</td>
<td>Noise Figure</td>
<td>0.5</td>
<td>db</td>
<td></td>
<td></td>
<td>VDS = -15V, VG = 0V, RG = 10mΩ</td>
</tr>
</tbody>
</table>

Typical Spice Parameters for LSJ689 in LTSpice Format:

```
LSJ689_4 IDSS = 14.0mA RDS=112
.Model LSJ689_4 PJF (LEVEL=1 BETA=28E-4 VTO=-2.75 LAMBDA=2E-3
+ IS=4.5E-16 N = 1 RD=73 RS=35 CGD=6E-12 CGS=11E-12 PB=0.25 MJ=0.3 FC=0.5
+ KF=2E-18 AF=1 XTI=0)
```
NOTES

1. Absolute maximum ratings are limiting values above which serviceability may be impaired.
2. Pulse width ≤2 ms.
3. All MIN/TYP/MAX Limits are absolute values. Negative signs indicate electrical polarity only.
4. Derate 2.4 mW/°C above 25°C.
5. Derate 4 mW/°C above 25°C.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.
TYPICAL CHARACTERISTICS

Output Characteristics
Tj=25°C
VGS=0.0V
VGS=0.2V
VGS=0.4V
VGS=0.6V
VGS=0.8V
VGS=1.0V
VGS=1.2V
VGS=2.0V

DRAIN CURRENT (mA) vs DRAIN-SOURCE VOLTAGE (V)

Output Characteristics
Tj=25°C
VGS=0.0V
VGS=0.2V
VGS=0.4V
VGS=0.6V
VGS=0.8V
VGS=1.0V
VGS=1.2V
VGS=2.0V

DRAIN CURRENT (mA) vs DRAIN-SOURCE VOLTAGE (V)

Output Characteristics
Tj=25°C
VGS=0.0V
VGS=0.2V
VGS=0.4V
VGS=0.6V
VGS=0.8V
VGS=1.0V
VGS=1.2V
VGS=2.0V

DRAIN CURRENT (mA) vs DRAIN-SOURCE VOLTAGE (V)

Output Characteristics
Tj=25°C
VGS=0.0V
VGS=0.2V
VGS=0.4V
VGS=0.6V
VGS=0.8V
VGS=1.0V
VGS=1.2V
VGS=2.0V

DRAIN CURRENT (mA) vs DRAIN-SOURCE VOLTAGE (V)

Output Characteristics
Tj=25°C
VGS=0.0V
VGS=0.2V
VGS=0.4V
VGS=0.6V
VGS=0.8V
VGS=1.0V
VGS=1.2V
VGS=2.0V

DRAIN CURRENT (mA) vs DRAIN-SOURCE VOLTAGE (V)

Output Characteristics
Tj=25°C
VGS=0.0V
VGS=0.2V
VGS=0.4V
VGS=0.6V
VGS=0.8V
VGS=1.0V
VGS=1.2V
VGS=2.0V

DRAIN CURRENT (mA) vs DRAIN-SOURCE VOLTAGE (V)

Output Characteristics
Tj=25°C
VGS=0.0V
VGS=0.2V
VGS=0.4V
VGS=0.6V
VGS=0.8V
VGS=1.0V
VGS=1.2V
VGS=2.0V

DRAIN CURRENT (mA) vs DRAIN-SOURCE VOLTAGE (V)

Output Characteristics
Tj=25°C
VGS=0.0V
VGS=0.2V
VGS=0.4V
VGS=0.6V
VGS=0.8V
VGS=1.0V
VGS=1.2V
VGS=2.0V

DRAIN CURRENT (mA) vs DRAIN-SOURCE VOLTAGE (V)

Output Characteristics
Tj=25°C
VGS=0.0V
VGS=0.2V
VGS=0.4V
VGS=0.6V
VGS=0.8V
VGS=1.0V
VGS=1.2V
VGS=2.0V

DRAIN CURRENT (mA) vs DRAIN-SOURCE VOLTAGE (V)

Output Characteristics
Tj=25°C
VGS=0.0V
VGS=0.2V
VGS=0.4V
VGS=0.6V
VGS=0.8V
VGS=1.0V
VGS=1.2V
VGS=2.0V

DRAIN CURRENT (mA) vs DRAIN-SOURCE VOLTAGE (V)

Output Characteristics
Tj=25°C
VGS=0.0V
VGS=0.2V
VGS=0.4V
VGS=0.6V
VGS=0.8V
VGS=1.0V
VGS=1.2V
VGS=2.0V

DRAIN CURRENT (mA) vs DRAIN-SOURCE VOLTAGE (V)

Output Characteristics
Tj=25°C
VGS=0.0V
VGS=0.2V
VGS=0.4V
VGS=0.6V
VGS=0.8V
VGS=1.0V
VGS=1.2V
VGS=2.0V

DRAIN CURRENT (mA) vs DRAIN-SOURCE VOLTAGE (V)
TYPICAL CHARACTERISTICS (CONT'D)

Drain Current and Transconductance vs. Gate-Source Cutoff Voltage

Tj=25°C

Equivalent Input Noise Voltage vs Frequency

VDS=15V
ID=2mA

On-Resistance and Output Conductance vs. Gate-Source Cutoff Voltage

Tj=25°C

Output Conductance vs. Drain Current

VDS=15

Reverse Transfer Capacitance (Crss) vs Gate-to-Drain Voltage

VGS=0V
f=1MHz
Tj=25°C

Input Capacitance (Ciss) vs Drain-to-Source Voltage

VGS=0V
f=1MHz
Tj=25°C
Linear Integrated Systems (LIS) is a 25-year-old, third-generation precision semiconductor company providing high-quality discrete components. Expertise brought to LIS is based on processes and products developed at Amelco, Union Carbide, Intersil and Micro Power Systems by company President John H. Hall. Hall, a protégé of Silicon Valley legend Dr. Jean Hoerni, was the director of IC Development at Union Carbide, Co-Founder and Vice President of R&D at Intersil, and Founder/President of Micro Power Systems.